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I. INTRODUCTION

Accurate modeling of the HF and DF chemical lasers requires a

reliable set of reaction rate coefficients, Cohenl has reviewed the literature
to provide a standardized rate package for use with computer codes. In
addition an excellent review of gaseous fluorine reactions has been recently

presented by Foon and Kaufman.z The rates of the so-called '‘cold" reactions,

F + HZ and F + DZ' are among the most important parameters in the laser

systems:

k

F +H2-1—HF++H (1)
K
F + DZ—Z.DF* +D (2)

A number of measurements, both relative and absolute, have been reported
in the last several years, Just recently, Quick and Wittig3 and Preses

et al. 4 reported that the infrared multiphoton dissociation of SF6 is a con-
venient F -atom source for time -resolved kinetic measurements. In the
present work this technique was used under demonstrably isothermal experi-
mental conditions to obtain extremely precise rate coefficients for these two
reactions, The accuracy of the determinations critically depends on the use
of the total HF (DF) fundamental chemiluminescence as a diagnostic for the
extent of reaction. This assumption is examined both analytically and with

the use of The Aerospace Corporation numerical modeling code NEST. >




I. EXPERIMENTAL APPARATUS AND PROCEDURE

The measurements were performed in a room-temperature flow
system. Argon and calibrated mixtures of SF6 in argon (10.24%), Hz in

argon (10. 14%), and D, in argon (10. 37%) were of the highest purity available

2
in bulk-gas form, Molar flow rates were measured with rotameter flow-
meters calibrated against pressure-rise measurements in a standard volume,
The total pressure was measured with a capacitance manometer gauge
(MKS Tru-Torr) with a resolution of 1 X 10-3 Torr. All data were taken at
3.95 £ 0.03 Torr pressure. SF, partial pressures of 6.5 X 107> and
33 x 10'3 Torr were used, and the HZ(DZ) partial pressure was varied from
2.5t0 75 % 10'3 Torr. Argon constituted the balance cf the flow.

The fluorescence cell incorporated into the flow system was a
10-cm-i.d. brass cube internally coated with teflon (Fig. 1). Radiation
from a pulsed CO2 laser (Lumonics K-202-2) entered and exited the cell
through 1{5-cm-long, 2.5-cm-i.d. side arms fitted with NaCl windows. The
lagser was focused with a 38.cm focal length f.1, ZnSe lens into the center of
the cell. In this region the beam diameter was constant at approximately 2mm
over 5 cm of aptical path length. The reported data were taken with the use
of the P(20) CO2 line at 10,59 pm at an energy of 1.5 J/pulse. No visible
emission was detected with a GaAs photomultiplier when argon alone,

Ar + SF6. or Ar + H, was flowed through the cell. Thus gas breakdown was

2

eliminated as a consideration in these experiments. Substantial HF 3 -+ 0

overtone emission was observed at 8900 .R when HZ and SF6 were simul-

taneously present,

.
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. The chemiluminescence from HF ' or DF+ was collected by an internal
2-in. -diameter £/2 aluminum mirror overcoated with Mng. The radiation,
after appropriate filtering, was focused onto a 77 K InSb detector (Texas
Instruments). The amplified signal was recorded with a Biomation 805
transient recorder and stored in a Nicolet 1072 digital signal averager.

The data represent an average of eight laser pulses. A typical trace is
shown in Fig. 2 with the rise and fall of the chemiluminescence recorded on
separate time bases. The measured rise time was always greater than 10
times the detector-amplifier response time of 1.5 psec. The gas mixture
was replaced approximately five times between laser shots in order to
eliminate the possible effects of product accumulation on the measured rates.

Although the experimental arrangement is nominally a flow system, the

measured fluorescence times are orders of magnitude shorter than the

transit time of gas through the cell. Thus the data are analyzed in terms

of a laser-irradiated static mixture.

%
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III. DATA ANALYSIS

The rate coefficient k, can be determined directly from the rise time

1
of the fluorescence from HF+ produced by Reaction (1). This technique has
been used previously for the measurement of reaction rate coefficients for
reactions of Cl atoms with HBr(DBr) and HI(DI). 6 It provides an accurate
value of the rate coefficient, if certain spectroscopic and kinetic conditions

are met. These conditions are described in this section. The total fluores-

- cence I(t) is related to the individual vibrational level populations by
I(t) = T A [HF(v)] (3)

where AV is the radiative lifetime of the vth vibrational level. The initial

vibrational populations are produced by Reaction (1):

k (v)
F+H, =— HF(v) +H, v=1,2,3

These levels are removed by a variety of processes; however, the following
analysis focuses on single -quantum deactivation by quenching partners such
as H2 and argon, whose concentration remains essentially constant during

the experiment ([F] << [HZ]).

k4(v)
HF(v) +M ==+ HF(v - 1)+ M (4)

Process (4) can populate certain of the lower vibrational levels.
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Radiative loss of HF+

, V =V coupling between excited HF levels, and
back transfer of vibrational energy from Hz(v) to HF (v') are omitted from
the analysis. The result is an analytic expression that is tractable. The
omitted terms were included in the NEST computer calculations and found

to have little quantitative effect for the experimental conditions of this study.

In this context, the rate equation for [HF (v)] is

STHE )] = k (IE,][F] - k,(v)[HF ()] M] + k(v + O[HF (v + 1)] [M]

(5)

and the rate equation for total fluorescence intensity can be written as
) _ 4 o] = ]
ac = gt ZAJ[HF )] = [BI[F]Zk (VA - Tk, (v)A_[HF (v)] [M]

+ Ik, (v + 1)AV[HF(v + 1)] [M] (6)

Equation (6) reduces exactly to Eq. (7)

QLG) = H{

at [FIZA Kk, (v) - ky(1)M]L(t) (7)

5]

when the deactivation rate coefficients and the Einstein coefficients are

related by Eq. (8).

k4(2) _ A2
k4(1) A2 -A1
k4(3) A3

(8) :

k4(1) h A3 - A2

-14-




In the case of harmonic oscillators, AV « v and kV o v such that Eq. (8) is

satisfied exactly. HF is not harmonic, so kq(v) must increase as

1/2.4/4.93 to satisfy Eq. (8) with accepted values of the Einstein coefficients

Since [F] = [F]oexp(-kl[HZ]t),Eq. (7) can be integrated to yield

Ck, [H,][F],

- l
I(t) = kTﬁ_Iz]_k4(1)[MT :exp('k4(1)[M]t) - exp('kl[Hth)‘ (9)

where C is given by (§Avkl(v))/k1. Therefore, the rise time of the
fluorescence intensity T is directly related to the rate coefficient k1 by

TS (kl[HZ])-l, and the decay time can be expressed as T, = (k4(1)[M])-1.

Equation (9) can be rewritten as:

-1
cr. [Flg t t
1. T-lgexP Te eXP\T )

Tr f r

At long times the intensity is represented by

C'r'l[F]O

-t
I (t) = ———= exp —) (11)
L T;l i Tf-l T

The short-time intensity difference between Egs. (10) and (11) is given by

c-r;‘ [F], &
Igt) = I (t) - I(t) = PR WS exp (;';) (12)
r f

Both Eq. (11) and Eq. (12) have the same intercept, which can be related to

the initial F-atom concentration

-15-
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Numerical modeling calculations were performed with the NEST5

computer code with input parameters corresponding to the present experi-
mental conditions in order to test the accuracy of these analytic approxima-
tions. Recommended values of Av' the reaction rate coefficients kl(v) for
the F + H2 - HF(v) + H reactions, and the HF (v)-HF deactivation processes
k4(v) were taken from Reference {. Rate coefficients for HF (v) deactivation
by H and H2 were taken from References 7 and 8, respectively.
The computer code calculated a time-dependent fluorescence profile

from which a rise time and a decay time were extracted by the same method

applied to the laboratory data. The limitations of the analytical equations

were revealed by comparing the derived rate coefficients with the input values.

The most important conclusion is that 7 = (kl[Hz])‘1 is a good approximation
even when Eq. (8) is not valid, as long as L << Tee The computed fluore-
scence prof les obey this latter criterion to a high degree of accuracy.
Results of these calculations are shown in Table I for three different H2
pressures,

The experimental decay times Tgare somewhat shorter than those

computed with the standard rate coefficients. The ratio 'rf/ T ranged

.16-

ot s




. from 6 to 30 for the experimental data. The measured decay times were
sensitive to gas purity and handling techniques; impurity deactivation of
HF(v), e.g., by HZO’ may play a role in these experiments. Artificially
fast decay rates were inserted into the calculations in order to reproduce
the experimental decay times and determine the effect of additional deacti-

vation on the derived rise times. Three methods of scaling this increased

deactivation with v were examined: (1) k4(v) = constant, (2) k4(v)av2, and

(3) k4(v) scaling by Eq. (8). The normalized rise times and decay times

-

determined from the fluorescence profiles are listed in Table I for these
three cases, The first two cases did not decay with single exponential rates;
therefore the decay times are approximate force fits. The calculated rise *
time for 0.001 Torr F and 0.005 Torr H2 was lengthened somewhat by
the removal of 20% of the H2 during the chemical reaction. From these

calculations the systematic error in relating the fluorescence rise time to ’

‘i the rate coefficients k1 and kZ is estimated to be 5%,

-17-




Table I. Numerical Modeling Results for Representative

Conditions of 0.001 Torr F and 4.0 Torr Ar + H

2
Case 0.005 Torr !-I2 0.025 Torr H2 0.10 Torr HZ
12 1.00 0.99 0.98
b
T;I/kl[HZ] 2 0.85 0.97 0.98
3 1.09 1.12 1. 06
4 0.98 0.96 0.95 , 4
e . i
1 na na na o
". Tf'1/k4(1)[Ar] 2 1.00 1.00 0.98
; 3 1.02 1.14 1.05
4 0.69 0.69 0.60

3Case 1 = Standard reaction rate coefficients (see text).
Case 2 = k4(v) scaled from Eq. (8), 1/2.4/4.93/14.3.

Case 3

2
k4(v) v,
Case 4 = k4(v) = constant.

bih Cases 2 through 4, kq(1) is adjusted to provide reasonably close

! agreement between calculated and measured decay times.

-18-
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IV. RESULTS

The analytic description of the infrared chemiluminescence is
approximate, and numerous checks on the accuracy of the analysis were
performed. The linearity of lnIL(t) and lnls(t) versus t is shown in Fig. 3,
which represents a deconvolution of the trace presented in Fig. 2. The
deviations from linearity predicted in Table I for certain deactivation
rate scalings are barely discernible within the experimental scatter. The
intercepts IL(O) and IS(O) were typically the same (within 10%), as predicted.
Plots of [F]o. calculated with Eq. (13), versus [HZ] or [DZ] were constant
to *15% for nominally constant laser conditions. Thus SFZ + HZ(DZ) colli -
sions do not contribute to [F]0 or, by implication, to the time history of HF+.
These results agree with previous deductions about the system. 3 Although
each data set was collected for constant [SF6], a plot of ln[F]0 versus
ln[SF6] had a slope of 1,06, demonstrating that the formation of F atoms
is linearly dependent on the [SF6]. As expected, SFZ—SFZ collisions do
not play a role in F -atom formation.

The fall time of the infrared chemiluminescence was plotted versus
the [HZ] and [Dz] and compared with computer simulations that were based on

+

the known collisional, radiative, diffusional, and convective losses of HF

and DF+

(Fig. 4). The last three removal processes are held constant in
these plots. Thus the slope should represent the collisional quenching of

the coupled HF (v) levels by Hz and the DF(v) levels by D As discussed

2°
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earlier, the measured quenching rates are faster than the computed rates.
A low-level HZO impurity in the HZ(DZ) is the most likely explanation for
these results, but additional experiments are in progress.

The inverse rise time T;i of the infrared chemiluminescence is given
by kl[HZ] and kZ[DZ]‘ These quantities are plotted versus [HZ] and [DZ] in
Fig. 5. An unweighted linear least-squares fit to these data results in the
rate coefficients k, = (1.81% 0.07)x 10'> and k, = (9.46 * 0.30) x 10'%cm’®/ ;
mol-sec. The values given in Tables II and IlI have stated errors that reflect
the statistical error previously given and a systematic error of *15%.

The determination of kllk2 (Table III) is extremely insensitive to

} systematic errors in the various calibration procedures. The proposed

_ + .
value k1/k2 =1.92 £ 0,23 has an error given by kllkz (ollkl + ozlkz + 0.05),

where 04 and 0, are the standard deviations of ky and kp (Fig. 5). The » iﬂ

reflects the uncertainty in the use of infrared chemilumine-

term 0. 05 kl /k2

scence from HF or DF as an F -atom disappearance diagnostic. “
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V. DISCUSSION

The result for k1 obtained in this study is in excellent agreement with
those determined by Quick and Wittig3 and by Preses et al. 4 Although in

all three studies the same basic experimental technique was used, in the

e s

present study an attempt was made to establish well-defined conditions for
kinetic rate measurements. Unlike the earlier studies data were collected
for a constant pressure of inert buffer gas (argon) with a ratio of [Ar]/[F]0
~4 X 103, which eliminates the possibility of hot-atom reactions 24 between
F and HZ(DZ) and limits the adiabatic temperature rise to approximately
2.5°C. Computer calculations made with the use of the NEST5 code indicate
that the actual temperature rise during the fluorescence rise time is <1 C for
[F]0 = 0.001 Torr. The change in k1 when [SF6]O was increased from 6.6 to
33 mTorr was not statistically significant., This observation rules out a
temperature rise produced by the laser heating of nondissociating SF6'

The other experimental determinations of k1 (Table II) have been
critically reviewed by Cohen1 and by Foon and Kaufman. 2 Each review
recommends the value k1 = (1.5 0.5)% 1013cm3/mol—sec and cites the
study by Clyne et al. 14 as the most direct. The present measurement falls
within the high side of that experimental limit and disagrees principally with
several precise ESR studies, 13,15

Absolute measurements of k2 were nonexistent until very recently

(Table III); thus the principal comparison of the multiphoton result must be

with earlier measurements of the k1/k2 ratio. The study by Persky21 is

_27-

; PRE , n '

xEQr .
4 ) Oineg VA6 E ‘?lﬁﬂk~uo\~ Eil ).
o L. ~ - e , .
R N - £ ™ "

RN i




the most precise determination of kI/kZ made under demonstrably =

thermalized conditions. That study is in excellent agreement with the

nuclear-recoil experiments of Grant and Root23 in which highly moderated
8F atoms were used. The measurements obtained in this study are in close

agreement with these results and are within the experimental error of most of

the other determinations in Table III. Thus the value of k2 =(9.5*1, 7

012

x 1 cm3/mol-sec is both a direct determination and one that satisfies well-

established values for kI/kZ'

The temperature dependence of k1/k2 has been measured by Persky, 21

[k,/k, = (1.04 £ 0.02)exp(370 £ 10)/RT], and by Grant and Root, 23

[kilk2 = (1.04 * 0. 06)exp(382 * 35)/RT], with upper temperature limits of
417 and 475 K, respectively. These data provide a useful standard for

evaluating the results of future high-temperature studies of F + HZ and

F + D2 by means of the multiphoton dissociation-infrared chemiluminescence

technique.
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VI. CONCLUSIONS

Accurate and precise rate coefficients for the F + H2 and F + D2
reactions have been measured under highly controlled experimental condi-
tions. The extension of the work to temperature-dependent studies over the
wide temperature range required for modeling of electron-beam-initiated

HF and DF chemical lasers is in progress.
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems. Ver-
satility and flexibility have been developed to a high degree by the laborato-
ry personnel in dealing with the many problems encountered in the Nation's
rapidly developing space systems. Expertise in the latest scientific develop-
ments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research sre:

Aerophysics Laboratory: Aerodynamics; fluid dynamics; plasmadynsmics;
chemical kinetics; engineering mechanics; flight dynamics; heat transfer;
high-power gas lasers, continuous and pulsed, IR, visible, UV; leser physics;
laser resonator optics; laser effects and countermeasures.

Chemistry and Physics Laboratory: A pheric reactions and optical back-
grounds; radistive transfer and atmospheric transmission; thermal and state-~
specific reaction rates in rocket plumes; chemical thermodynasics and propul-
sion chemistry; laser isotope separation; chemistry eand physice of particles;

P envir sl and contamination effects on spscecraft wsterials; lubrica-
tion; surface chemistry of insulators and ductors; hode materials; sen-
sor materials and sensor optics; applied laser spectroscopy; stomic frequency
standards; pollution and toxic msterials monitoring.

Electronics Research Laboratory: Electromagnetic theory and propagation
phenomena; microwave and semiconductor devices and integrated circuits; quan-
tum electronics, lasers, and electro-optics; comsunication sciences, applied
electronics, superconducting and electronic device physics; aillimeter-wave
and far-infrared technology.

Materials Sci _Labo ry: Development of unew materials; composite
materials; graphite and cers cersmics; polymeric materials; weapons effects snd
hardened materials; materials for electronic devices; dimensionally stable
materials; chemical and structursl anslyses; stress corrosion; fatigue of
setals.

Space Sciences Laboratory: Atmospheric and ionospheric phyeics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; megnetospheric physics, cosaic rays, generation and propagstion
of plasms waves in the magnetosphere; solar physics, x-ray astronomy; the effects
of nuclear explosions, magnetic storms, and solar activity on the earth's
atmosphere, ionosphare, and magnstosphere; the effects of optical, electromag-
netic, and particulate radiations in space on space systeas.







